3D Bioplotter Research Papers

Displaying all papers by C. Kenel (11 results)

Microstructure and mechanical properties of 3D ink-extruded CoCrCuFeNi microlattices

Acta Materialia 2022 Volume 238, Article 118187

Microlattices with orthogonal 0-90° architecture are 3D-extrusion printed from inks containing a blend of oxide powders (Co3O4, CuO, Fe2O3, and NiO) and metal powder (Cr). Equiatomic CoCrCuFeNi microlattices with ∼170 µm diameter struts are then synthesized by H2-reduction of the oxides followed by sintering and interdiffusion of the resulting metals. These process steps are studied by in-situ synchrotron X-ray diffraction on single extruded microfilaments (lattice struts) with ∼250 µm diameter. After reduction and partial interdiffusion at 600 ˚C for 1 h under H2, filaments consist of lightly-sintered metallic particles with some unreduced Cr2O3. A reduced, nearly fully densified (porosity: 1.6 ± 0.7%)…

Microstructure and properties of additively-manufactured WC-Co microlattices and WC-Cu composites

Acta Materialia 2021 Volume 221, Article 117420

Liquid ink-printing followed by sintering is used to fabricate WC-Co microlattices and cutting tools. The microstructure of WC-xCo (x=0.5-20 wt.%) is studied for a range of carbide-to-binder ratios and for various sintering temperatures. For 0.5≤Co≤5 wt.%, struts in microlattices exhibit residual porosity due to incomplete densification, even at the highest sintering temperature of 1650 °C. With 10 wt.% Co, fully dense lattice struts are achieved after sintering at 1450 °C for 1 h. For 1450-1650 °C sintering temperatures, the hardness of WC-xCo struts initially increases (due to increasing densification with increased Co) and then gradually decreases (due to an increase…

Microstructure evolution during reduction and sintering of 3D-extrusion-printed Bi2O3+TeO2 inks to form Bi2Te3

Acta Materialia 2021 Volume 221, Article 117422

As an alternative to beam-based additive manufacturing, 3D ink-extrusion additive manufacturing is studied here for thermoelectric Bi2Te3, starting from Bi2O3+TeO2 oxide precursor powders. In situ synchrotron XRD in flowing H2 at elevated temperatures reveals the complex phase evolution upon co-reduction leading to the formation of Bi2Te3, Bi2TeO5 and Bi2TeO2. Sintering trials performed using optimal temperatures identified by in situ XRD show that low heating rates and extensive holding times are required to achieve full co-reduction to pure Bi2Te3. The formation of liquid Bi at the temperatures required for oxide reduction leads to local transient-liquid-phase sintering, creating a coarse-grained porous structure.…

Complex-shaped, finely-featured ZrC/W composites via shape-preserving reactive melt infiltration of porous WC structures fabricated by 3D ink extrusion

Additive Manufacturing Letters 2021 Volume 1, Article 100018

Complex-shaped, finely-featured, ultra-high-melting ZrC/W composite structures were produced by coupling, for the first time, three-dimensional (3D) ink-extrusion printing with shape/size-preserving reactive melt infiltration (the Displacive Compensation of Porosity, DCP, process). Inks containing sub-micron WC powders were printed at ambient temperature into either fine-scale structures (sub-millimeter filaments) or into a larger-scale, finely-featured 3D structure (a centimeter-scale nozzle with a sub-millimeter-thick wall). After organic binder removal, the printed structures were sintered at 1650 °C for 1 h to achieve a porosity of 50%. The porous, rigid WC structures then underwent ambient pressure infiltration and reaction with Zr-Cu liquid at up to 1350…

3D ink-printed, sintered porous silicon scaffolds for battery applications

Journal of Power Sources 2021 Volume 507, Article 230298

The fabrication of 3D ink-printed and sintered porous Si scaffolds as electrode material for lithium-ion batteries is explored. A hierarchically-porous architecture consisting of channels (~220 μm in diameter) between microporous Si struts is created to accommodate the large volume change from Si (de)lithiation during electrochemical (dis)charging. The influence of sintering parameters on Si strut porosity and the resulting mechanical and electrochemical properties of the scaffolds are studied experimentally and computationally. Varying sintering temperatures (1150–1300 °C) and sintering times (1–16 h) the open porosity within the Si filaments can be tailored between 46 and 60%. Pore size (3–6 μm) and wall…

Hierarchically-porous metallic scaffolds via 3D extrusion and reduction of oxide particle inks with salt space-holders

Additive Manufacturing 2021 Volume 37, Article 101637

3D ink-extrusion of powders followed by sintering is an emerging additive manufacturing method capable of creating metallic microlattices. Here, we study the creation of hierarchically porous Fe or Ni scaffolds by 3D extrusion of 0/90° lattices from inks consisting of fine oxide powders (Fe2O3 or NiO, < 3 µm), coarse space-holder particles (CuSO4, < 45 µm) and a polymer binder within a solvent. After space-holder leaching and debinding of the lattices, a sintering step densifies the metallic Fe or Ni powders created by oxide reduction with H2, while maintaining the larger pores templated by the space-holder particles within the printed…

3D ink-extrusion printing and sintering of Ti, Ti-TiB and Ti-TiC microlattices

Additive Manufacturing 2020 Volume 35, Article 101412

Titanium metal matrix composite microlattices are fabricated using 3D ink extrusion printing and sintering. The inks consist of TiH2+TiB2 or TiH2+TiC powder blends to form (i) Ti-TiB composites by dehydrogenation and in situ reaction of Ti + TiB2 to form Ti + TiB and (ii) Ti-TiC composites, where TiC remains stable during the sintering process. Rapid densification of the printed powder blend is achieved during pressureless sintering in vacuum at 1200 °C between 1 and 4 h, due to the small Ti particle size available from dehydrogenation of micron-sized TiH2. Near-full density Ti-TiB and Ti-TiC is achieved within individual lattice…

Kinetics of alloy formation and densification in Fe-Ni-Mo microfilaments extruded from oxide- or metal-powder inks

Acta Materialia 2020 Volume 193, Pages 51-60

3D ink-extrusion of powders followed by sintering is an emerging alternative to beam-based additive manufacturing, capable of creating 3D metallic objects from 1D-extruded microfilaments. Here, in situ synchrotron X-ray diffraction and tomography are combined to study the phase evolution, alloy formation and sinter-densification of Fe-20Ni-5Mo (at.%) microfilaments. The filaments are

SnO2-Ag composites with high thermal cycling stability created by Ag infiltration of 3D ink-extruded SnO2 microlattices

Applied Materials Today 2020 Volume 21, Article 100794

SnO2-Ag composites with designed architectures with sub-millimeter feature sizes can provide enhanced functionality in electrical applications. SnO2-Ag composites consisting of a ceramic SnO2 micro-lattice filled with metallic Ag are created via a hybrid additive manufacturing method. The multistep process includes: (i) 3D extrusion printing of 0/90° cross-ply micro-lattices from SnO2-7%CuO nanoparticle-loaded ink; (ii) thermal treatment in air to burn the binders and sinter struts of the SnO2 micro-lattice to ~94% relative density; (iii) Ag melt infiltration of channels of sintered micro-lattices. Densification of the SnO2 struts during air-sintering is accelerated by CuO liquid phase forming at 1100°C. During the subsequent…

3D ink-extrusion additive manufacturing of CoCrFeNi high-entropy alloy micro-lattices

Nature Communications 2019 Volume 10, Article number: 904

Additive manufacturing of high-entropy alloys combines the mechanical properties of this novel family of alloys with the geometrical freedom and complexity required by modern designs. Here, a non-beam approach to additive manufacturing of high-entropy alloys is developed based on 3D extrusion of inks containing a blend of oxide nanopowders (Co3O4 + Cr2O3 + Fe2O3 + NiO), followed by co-reduction to metals, inter-diffusion and sintering to near-full density CoCrFeNi in H2. A complex phase evolution path is observed by in-situ X-ray diffraction in extruded filaments when the oxide phases undergo reduction and the resulting metals inter-diffuse, ultimately forming face-centered-cubic equiatomic CoCrFeNi alloy. Linked to the phase evolution…

3D extruded composite thermoelectric threads for flexible energy harvesting

Nature Communications 2019 Volume 10, Article 5590

Whereas the rigid nature of standard thermoelectrics limits their use, flexible thermoelectric platforms can find much broader applications, for example, in low-power, wearable energy harvesting for internet-of-things applications. Here we realize continuous, flexible thermoelectric threads via a rapid extrusion of 3D-printable composite inks (Bi2Te3 n- or p-type micrograins within a non-conducting polymer as a binder) followed by compression through a roller-pair, and we demonstrate their applications in flexible, low-power energy harvesting. The thermoelectric power factors of these threads are enhanced up to 7 orders-of-magnitude after lateral compression, principally due to improved conductivity resulting from reduced void volume fraction and partial…